International Journal of Fatigue
| Country: | Netherlands |
|---|---|
| Journal ISSN: | 0142-1123 |
| Journal EISSN: | 1879-3452eissn |
| History | 1979-ongoing |
| Publisher | ELSEVIER SCI LTD |
| Journal Hompage: | Link |
| Note: |
International Journal of Fatigue
Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
Impact Factor Trend 2000 - 2025
The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric factor based on the yearly average number of citations on articles published by a particular journal in the last two years. In other words, the impact factor of 2024 - 2025 is the average of the number of cited publications divided by the citable publications of a journal. A journal impact factor is frequently used as a proxy for the relative importance of a journal within its field. Normally, journals with higher impact factors are often deemed to have more influence than those with lower ones. However, the science community has also noted that review articles typically are more citable than research articles.Here you can check the journal performance trends based on last 20 years of data, also check the latest journal citation reports 2025. Also Check H-Index, SCImago journal rank and journal impact factor 2025.
Read MoreImpact Factor History
Note: impact factor data for reference only
Any journal impact factor or scientometric indicator alone will not give you the full picture of a science journal. That’s why every year, scholars review current metrics to improve upon them and sometimes come up with new ones. There are also other factors to sider for example, H-Index, Self-Citation Ratio, SJR (SCImago Journal Rank Indicator) and SNIP (Source Normalized Impact per Paper). Researchers may also consider the practical aspect of a journal such as publication fees, acceptance rate, review speed.